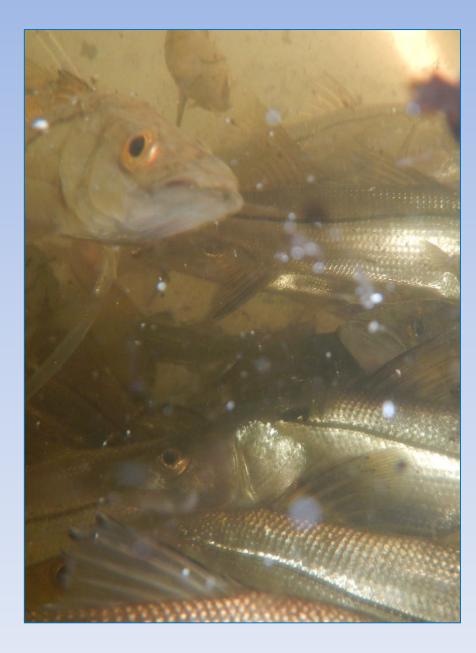
Hurricane-Driven Movements of Common Snook in the Shark River: An Examination of Fish Redistribution and Environmental Drivers

Jordan A. Massie¹, Bradley A. Strickland², Rolando O. Santos¹, Javiera Hernandez¹, Natasha Viadero¹, Ross E. Boucek³, Hugh Willoughby¹, Michael R. Heithaus², and Jennifer S. Rehage¹

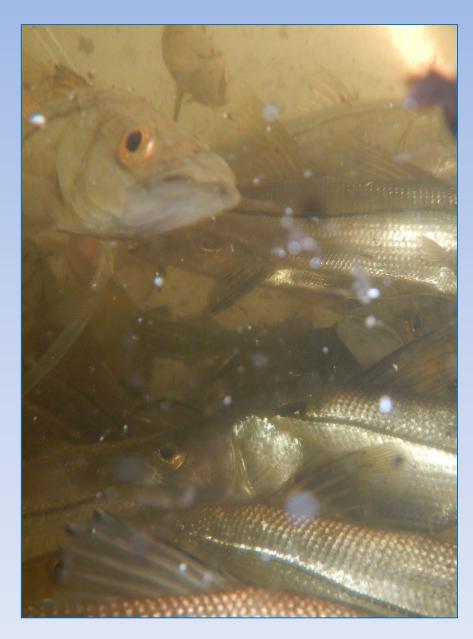
¹Florida International University, Department of Earth & Environment, Miami, FL 33199
 ²Florida International University, Department of Biological Sciences, North Miami, FL 33181
 ³Bonefish & Tarpon Trust, Florida Keys Initiative, Marathon, FL 33146

Greater Everglades Ecosystem Restoration Conference April 25th, 2019 Coral Springs, FL

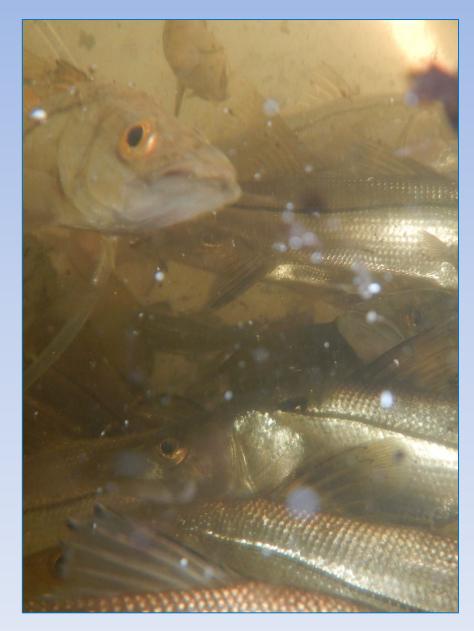

Why Study Animal Movement?

- Can provide valuable information on how animals experience their environment, often driven by physiological needs and predictable cues
 - Seasonal migrations for reproduction
 - Shifts in food/resource availability
- Rapid shifts in distribution also caused by abrupt environmental change, can carry consequences
 - Stressful conditions
 - Mismatch in resources
 - Timing of life-history events
- Behavioral responses occur quickly, can provide insight into how animal populations might respond to future climatic changes

What can we learn from changes in fish behavior that occurred in response to the passing of Hurricane Irma on September 10th, 2017?


Research Questions:

To what extent did the disturbance associated with Hurricane Irma influence fish populations in ENP?


Research Questions:

- To what extent did the disturbance associated with Hurricane Irma influence the fish populations in ENP?
- What were the environmental cues that may have elicited behavioral responses and prompted fish movements?


Research Questions:

- To what extent did the disturbance associated with Hurricane Irma influence fish populations in ENP?
- What were the environmental cues that may have elicited behavioral responses and prompted fish movements?
- What are the potential consequences of movements in response to extreme climate events?

Hypotheses:

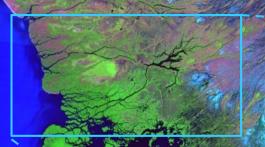
1. Fish responded to cues directly related to hurricane conditions, particularly drops in barometric pressure

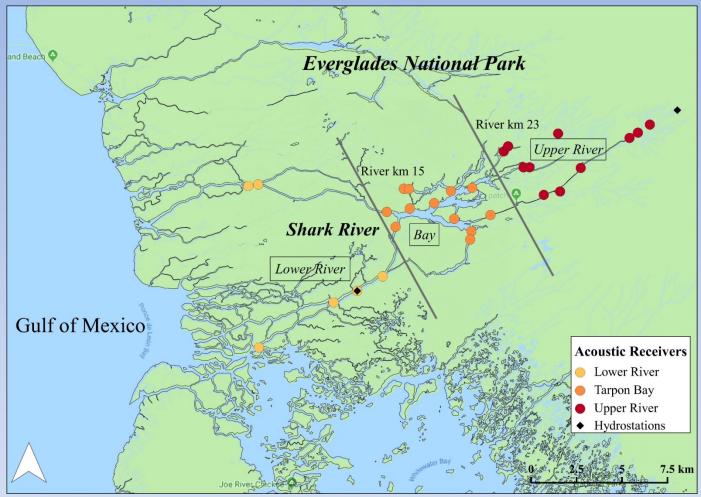
Hypotheses:

- 1. Fish responded to cues directly related to hurricane conditions, particularly drops in barometric pressure
- 2. Movements were driven by changes in riverine conditions
 - Storm surge
 - Increased precipitation, rising water levels

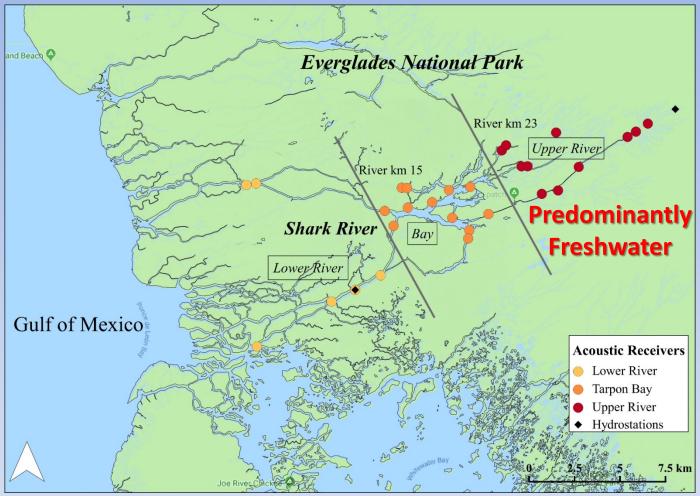
Hypotheses:

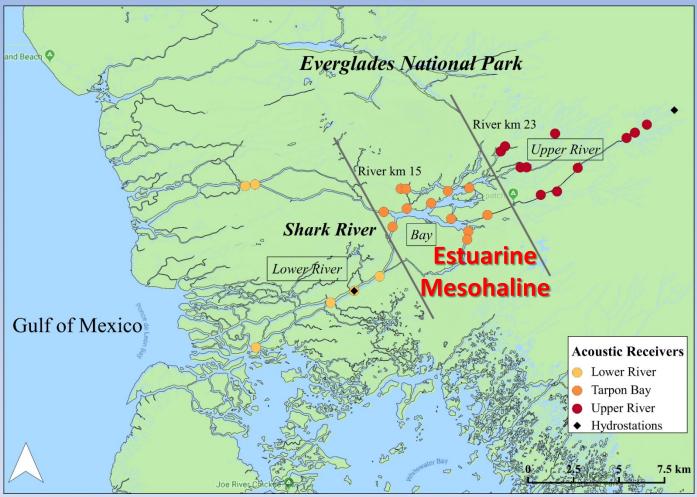
- Fish responded to cues directly related to hurricane conditions, particularly drops in barometric pressure
- 2. Movements were driven by changes in riverine conditions
 - Storm surge
 - Increased precipitation, rising water levels
- 3. Movements best explained by combination of both hurricane and riverine conditions


Focal Species: Common Snook (Centropomus undecimalis)

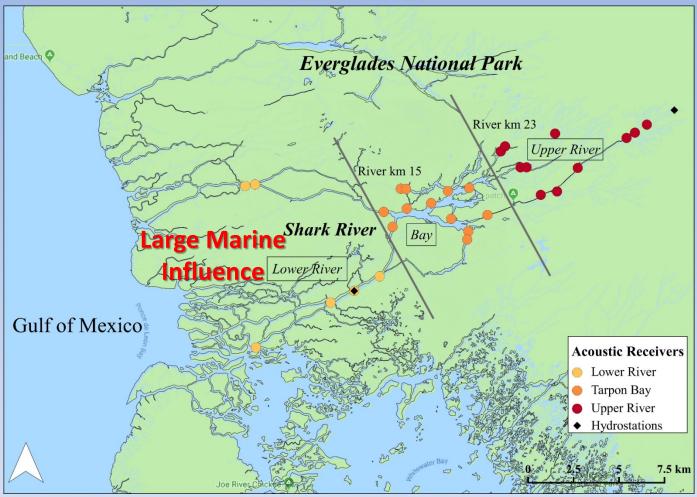

- Tropical euryhaline species
- Recreationally/economically importance fishery
- Marine obligate spawners, juveniles rear in small creeks and freshwater marshes
- Adults utilize habitat across salinity gradients, seasonally tracking abundant food sources
- Captured in the Shark River, ENP throughout year using boat-based electrofishing

Shark River, Everglades National Park



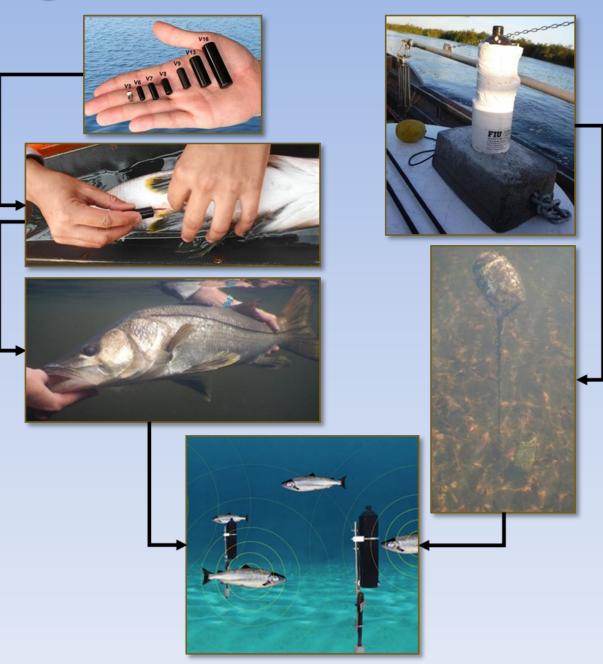


- Main conduit of water through western Everglades
- Ecologically distinct habitat zones


Upper River:

- Bordered by mangroves and sawgrass marshes
- Very low salinities, limited tidal influence
- Predominantly freshwater community

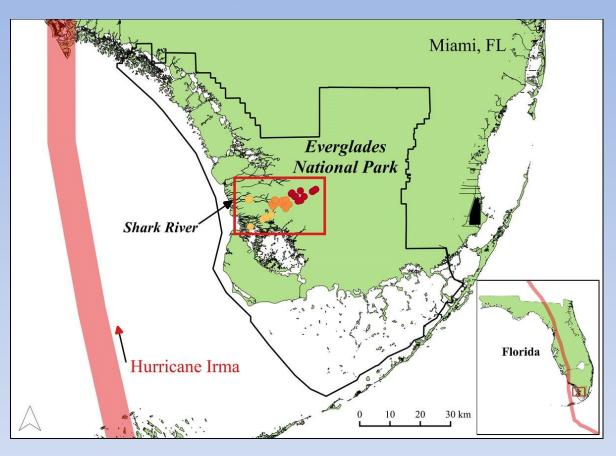
Tarpon Bay:


- Wide, shallow, mangrove lined habitats
- Seasonal variation in salinity (3 25 ppt)
- Community consisting of estuarine species

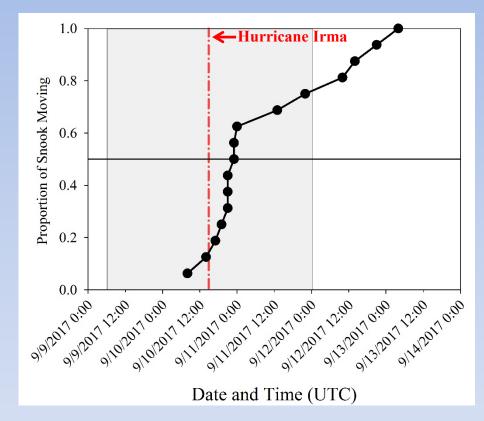
Lower River:

- Deep river channels, higher mangrove height/biomass
- Highest degree of tidal fluctuation
- Most marine influenced community

Tracking Movement: Acoustic Telemetry



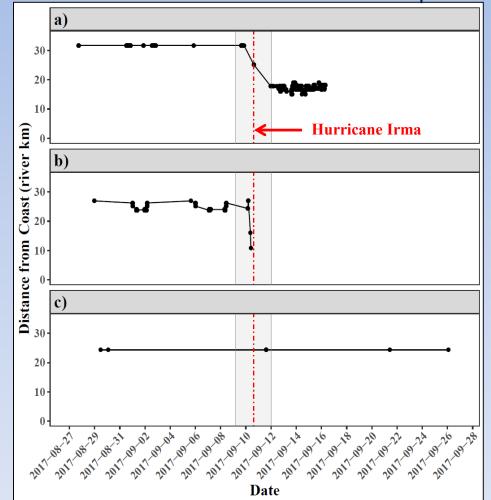
Tracking Movement: Acoustic Telemetry


- Snook tagging began in 2012, ongoing
- 37 receivers spanning headwaters to GOM
- When fish swims within
 500 m, records unique tag number
- Detections associated with time/location, used to characterize movement patterns

Hurricane Irma – September 10th, 2017

- Passed within 60 km of the Shark River
- Heavy rain, high winds, large drop in atmospheric pressure
- Storm surge > 2 meters in the lower river

- "Hurricane Window" defined based on rapidly changing conditions between Sept. 9 and Sept. 12, 2017
- 22 Snook recorded on array during this window
 - 73% moved to different habitat zone
 - First fish moved 7 hours before storm conditions
 - 50% of fish had moved within 8 hours of eyewall passage

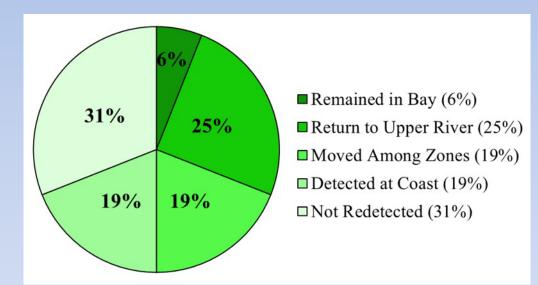


All fish located in the upper river before storm

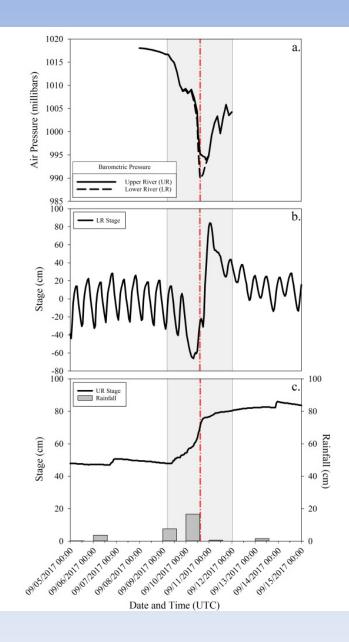
As the hurricane passed, fish rapidly spread throughout the system

- 3 predominant movement strategies detected
 - Upper river to bay zone (67%)
 - Upper river to lower river (22%)
 - No movement among zones (11%)

Acoustic detections and movement paths

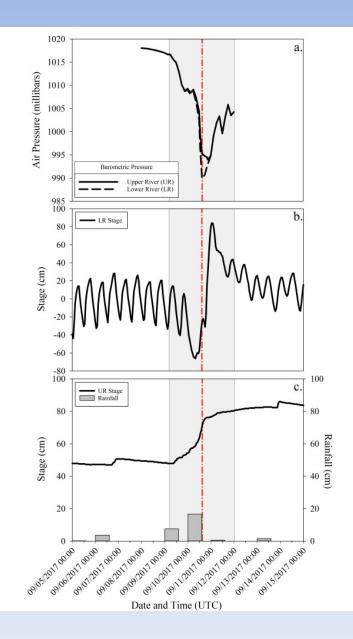

A few fish left entirely

A few fish left entirely, detected on receivers 70 km north at Faka Union on the Gulf Coast


6 Month Window Following the Storm

- 6% fish remained in Tarpon Bay
- 25% returned to upper river
- 19% continued moving among river zones
- 19% redetected at coast between Oct-April
- 31% not re-detected

What could have driven these movements?


- Low barometric pressure?
- Increasing water level from rainfall in the upper river?
- Storm surge/anti-surge?
- Change in dissolved oxygen?
- Changes in water temperature?

What could have driven these movements?

Hurricane and Riverine Conditions

- Selected variables reported to drive movement in other species
- <u>Hurricane Conditions</u>: Rapid drop in barometric pressure associated with the hurricane
- <u>Riverine Conditions</u>: Changes in water level spatially dependent, caused by different factors
 - Storm surge in lower river
 - Rainfall in upper river

What could have driven these movements? Analysis

- Logistic regression models used to investigate drivers, response variable is cumulative proportion of fish moving among zones over time
- Hurricane Effects: Barometric pressure
- Riverine Effects: Independently considered lower river stage (storm surge) and upper river stage (increased rainfall)
- Combined Effects: Considers both pressure and stage

	Variable(s)	k	df	ΔΑΙΟ	w AIC	Resid Dev	LL	\mathbf{D}^2
a.	Barometric Pressure	1	2	72.3	< 0.001	102.1	-51.03	0.43
b.	Lower River Stage (LR Stage)	1	2	64.1	< 0.001	93.9	-46.94	0.47
c.	Upper River Stage (UR Stage)	1	2	9.5	0.006	39.3	-19.64	0.78
d.	UR Stage + LR Stage	2	3	7.6	0.016	35.3	-17.67	0.80
e.	Pressure + UR Stage + LR Stage	3	4	2	0.264	27.8	-13.88	0.84
f.	Pressure + UR Stage	2	3	0	0.714	27.8	-13.88	0.84
	b. c. d. e.	 a. Barometric Pressure b. Lower River Stage (LR Stage) c. Upper River Stage (UR Stage) d. UR Stage + LR Stage 	a.Barometric Pressure1b.Lower River Stage (LR Stage)1c.Upper River Stage (UR Stage)1d.UR Stage + LR Stage2e.Pressure + UR Stage + LR Stage3	a.Barometric Pressure12b.Lower River Stage (LR Stage)12c.Upper River Stage (UR Stage)12d.UR Stage + LR Stage23e.Pressure + UR Stage + LR Stage34	a.Barometric Pressure1272.3b.Lower River Stage (LR Stage)1264.1c.Upper River Stage (UR Stage)129.5d.UR Stage + LR Stage237.6e.Pressure + UR Stage + LR Stage342	a. Barometric Pressure 1 2 72.3 <0.001	a. Barometric Pressure 1 2 72.3 <0.001	a. Barometric Pressure 1 2 72.3 <0.001

What could have driven these movements? Analysis

- Logistic regression models used to investigate drivers, response variable is cumulative proportion of fish moving among zones over time
- Hurricane Effects: Barometric pressure
- Riverine Effects: Independently considered lower river stage (storm surge) and upper river stage (increased rainfall)
- Combined Effects: Considers both pressure and stage

Best fitting model was a combination of upper river stage and barometric pressure

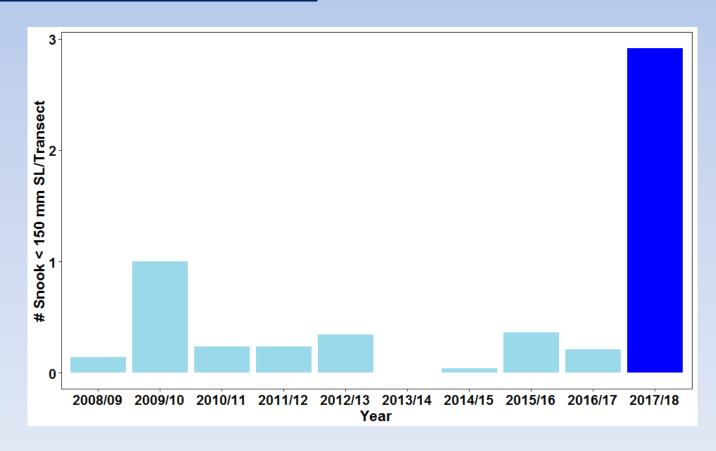
Model		Variable(s)	k	df	ΔΑΙΟ	w AIC	Resid Dev	LL	D ²
Hurricane Effects	a.	Barometric Pressure	1	2	72.3	< 0.001	102.1	-51.03	0.43
Riverine Effects	b.	Lower River Stage (LR Stage)	1	2	64.1	< 0.001	93.9	-46.94	0.47
	c.	Upper River Stage (UR Stage)	1	2	9.5	0.006	39.3	-19.64	0.78
	d.	UR Stage + LR Stage	2	3	7.6	0.016	35.3	-17.67	0.80
Combined Effects	e.	Pressure + UR Stage + LR Stage	3	4	2	0.264	27.8	-13.88	0.84
	f.	Pressure + UR Stage	2	3	0	0.714	27.8	-13.88	0.84

What could this mean for the population?

- Lower prey availability in new location (bad for fitness)
- Relocating to the coast could lead to increased predation by sharks (risky behavior)
- Lower densities, Snook more spread out, could reduce fishing success (unhappy anglers)

What could this mean for the population? But...

Back calculations of hatch date indicated spawning shortly after Hurricane Irma.



What could this mean for the population?

Fish sampling in December, 2017 produced the highest catch of juvenile Snook on record!

Could hurricanes also have positive impacts on the Snook reproduction?

Research in the coming years on population size, fish distribution, and angler success could answer this question.

Summary:

- Hurricane Irma resulted in large-scale movement of Snook in ENP
- Fish redistributed throughout the system, with some fish moving into coastal waters
- Movement corresponded to high water levels in the headwaters, and low barometric pressure
- Future work will focus on long-term population trends, and if hurricane behaviors might be predicted by pre-storm movements

Acknowledgements:

- U.S. Army Corp. of Engineers
- National Science Foundation
- Everglades National Park
- Florida International University
- Florida Fish & Wildlife Conservation Commission
- National Oceanic and Atmospheric Administration

- Florida Coastal Everglades
 Long Term Ecological Research
 Program (FCE LTER)
- National Park Service
- Pat O'Donnell, Rookery Bay National Estuarine Research Reserve

Jordan Massie PhD Student, Rehage Lab Department of Earth & Environment jmassie@fiu.edu

Shark River at dusk. Image by Jordan Massie